CASE STUDY

Objective

- To get the prediction accuracy of the potential loss faced by the manufacturer when selling vehicles using Auto-AI and SXI and compare.
- Precision AI using Target SXI based Random Forest trees. Target decrease in overall average loss/car is $\mathbf{2 0 \%}$ from current levels.

SXI Hypothesis

- SXI Score is a proxy/surrogate for all features responsible for ensuring Lower or Greater loss. The lower the SXI, lower is the average loss/car and hence decreasing SXI score should lead to minimization of the overall car sales losses for the car manufacturer.

SXI Definition

- Sriya Expert Index (SXI): Dynamic score/index obtained from a proprietary formula consisting of weights from 10 ML algorithms. SXI is a super feature and is a true weighted representative of all important features. Converts a multi-dimensional hard to solve problem into a simpler 2dimensional solution (problem solved).
- SCORE + CORRELATE = IMPROVE

Discussion \& Results

1. Exploratory Data Analysis

$\mathbf{1 0 0 , 0 0 0}$ vehicles sold were distributed to $\mathbf{3 0 , 1 5 8}$ bad and $\mathbf{6 9 8 4 2}$ good cases. Overall Average loss/car is $\mathbf{\$ 1 8 5 5 . 5}$. A good case is when the loss/car is Lower than Average loss/car for all cars and Bad case is when the loss per car is > than Average loss/car for all cars. So, $\mathbf{6 9 . 8 4} \%$ is the Good (Lower loss) and $\mathbf{3 0 . 1 6 \%}$ is bad (Greater loss).

2. SXI - Exploratory Data Analysis

Current Average SXI is 2.27. No. of total vehicles sold above 2.27 is $\mathbf{4 6 3 7 3}$ and of these $\mathbf{2 2 3 3 1}$ are vehicles sold for lower loss (GOOD) and 24042 are vehicles sold for greater loss (BAD). So, vehicles sold for lower loss (\%) is $\mathbf{4 8 . 1 5} \%$ and vehicles sold for greater loss (\%) is 51.85\%.

Correspondingly the No. of total vehicles sold below 2.27 is $\mathbf{5 3 6 2 7}$ and of these $\mathbf{4 7 5 1 1}$ are vehicles sold for lower loss (GOOD) and $\mathbf{6 1 1 6}$ are vehicles sold for greater loss (BAD). So, vehicles sold for lower loss (\%) is $\mathbf{8 8 . 5 9} \%$ and vehicles sold for greater loss (\%) is 11.41\%.

So SXI is a perfect proxy/surrogate for vehicles sold for lower loss (GOOD) and above average SXI the ratio of good outcome is $\mathbf{0 . 6 9 x}$ overall average and below average SXI this ratio of good outcome is $\mathbf{1 . 2 7 x}$ overall average.

So, decrease in SXI leads to minimizing the potential average loss/car faced by the manufacturers.

3. Predictive AI

- Auto-AI Prediction accuracy is $\mathbf{1 0 0 \%}$ and best performing algorithm is Lasso.
- SXI Prediction accuracy of loss faced by the manufacturer is $\mathbf{1 0 0 \%}$.
- Ratio of SXI/Auto-AI prediction accuracy is $\mathbf{1}$.

4. Precision AI

Desired decrease in target outcome which is minimizing the overall average loss/car by 20%. Original overall average loss/car is $\mathbf{\$ 1 8 5 5 . 5}$ so a $\mathbf{2 0} \%$ decrease should lead to a overall average loss/car of \$1487.48 (\$1855.5*0.8). Which means $\mathbf{8 3}, \mathbf{8 1 0}$ of the vehicles sold from 100,000 would be vehicles sold for lower loss than current 69,842.

The correlation between SXI and Loss is $\mathbf{0 . 8 5}$. This implies that SXI and loss are highly, positively correlated to each other. Hence, a decrease in SXI will result in minimizing the overall average loss/car.

Current SXI and Target SXI Decision Trees

a. Current SXI Decision Tree

Interpretation

Node 1: Manufacturer Suggested Retail Price <= 187245 dollar
Left Split: loss= \$1788.95, Right Split: loss= \$269692.17
Node 2: New Car <= 50% probability
Left Split: loss= \$624.29, Right Split: loss= \$4253.39

Node 3: Manufacturer Suggested Retail Price < $=1382000$ dollar.
Left Split: loss= \$611.45, Right Split: loss= $\$ 145840$
$\checkmark \mathbf{4 2 7 8 3}$ samples leading to Vehicles that can be sold for minimum loss of \$611.45.
b. Target SXI Decision Tree

Target SXI from correlation curve for 20% decrease in target outcome of minimizing overall average loss/car is $\mathbf{2 . 1 5}$.

Interpretation

Node 1: Manufacturer Suggested Retail Price <= 126236.8 dollars
Left Split: loss= \$1781.95, Right Split: loss= \$219203

Node 2: New Car <= 40\% probability
Left Split: loss=\$613.68, Right Split: loss=\$4261.22

Node 3: Manufacturer Suggested Retail Price <= 94670.8 dollars.
Left Split: loss= \$610.51, Right Split: loss= $\$ 108190$
$\checkmark \mathbf{4 2 8 1 3}$ samples leading to Vehicles that can be sold for minimum loss of $\$ \mathbf{6 1 0 . 5 1}$.

Conclusion

1. Cars whose SXI score is lower than current average SXI score of $\mathbf{2 . 2 7}$ have $\mathbf{2 7 \%}$ lower losses than the overall average loss/car.
2. Target $\mathbf{2 0} \%$ decrease in average loss/car is achievable by decreasing target SXI to $\mathbf{2 . 1 5}$ from current $\mathbf{2 . 2 7}$ levels. This would result in $\mathbf{8 3 , 8 1 0}$ vehicles sold up for lower loss from current 69,842 levels.
```
Initial Increase of vehicles sold for
lower loss from current levels:
SXI Impact
Potential
20% or 13,968 vehicles
```

3. Based on the inference from the correlation graph w.r.t SXI there is a potential $\mathbf{8 6 . 5 5} \%$ compounded increase of vehicles that can be sold up for lower loss if all recommendations in target SXI are completely implemented.

Compounding Increase of vehicles sold for lower loss from current levels: 86.55% or 60.448 vehicles

SXI Impact
Potential

